Time course of air hunger mirrors the biphasic ventilatory response to hypoxia.

نویسندگان

  • S H Moosavi
  • R B Banzett
  • J P Butler
چکیده

Determining response dynamics of hypoxic air hunger may provide information of use in clinical practice and will improve understanding of basic dyspnea mechanisms. It is hypothesized that air hunger arises from projection of reflex brain stem ventilatory drive ("corollary discharge") to forebrain centers. If perceptual response dynamics are unmodified by events between brain stem and cortical awareness, this hypothesis predicts that air hunger will exactly track ventilatory response. Thus, during sustained hypoxia, initial increase in air hunger would be followed by a progressive decline reflecting biphasic reflex ventilatory drive. To test this prediction, we applied a sharp-onset 20-min step of normocapnic hypoxia and compared dynamic response characteristics of air hunger with that of ventilation in 10 healthy subjects. Air hunger was measured during mechanical ventilation (minute ventilation = 9 +/- 1.4 l/min; end-tidal Pco(2) = 37 +/- 2 Torr; end-tidal Po(2) = 45 +/- 7 Torr); ventilatory response was measured during separate free-breathing trials in the same subjects. Discomfort caused by "urge to breathe" was rated every 30 s on a visual analog scale. Both ventilatory and air hunger responses were modeled as delayed double exponentials corresponding to a simple linear first-order response but with a separate first-order adaptation. These models provided adequate fits to both ventilatory and air hunger data (r(2) = 0.88 and 0.66). Mean time constant and time-to-peak response for the average perceptual response (0.36 min(-1) and 3.3 min, respectively) closely matched corresponding values for the average ventilatory response (0.39 min(-1) and 3.1 min). Air hunger response to sustained hypoxia tracked ventilatory drive with a delay of approximately 30 s. Our data provide further support for the corollary discharge hypothesis for air hunger.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hypoxic and hypercapnic drives to breathe generate equivalent levels of air hunger in humans.

Anecdotal observations suggest that hypoxia does not elicit dyspnea. An opposing view is that any stimulus to medullary respiratory centers generates dyspnea via "corollary discharge" to higher centers; absence of dyspnea during low inspired Po(2) may result from increased ventilation and hypocapnia. We hypothesized that, with fixed ventilation, hypoxia and hypercapnia generate equal dyspnea wh...

متن کامل

Time-dependent ventilatory response to poikilocapnic hypoxia during light and dark periods and the role of histamine H1 receptors in mice.

We tested the hypothesis that the biphasic ventilatory response to poikilocapnic hypoxia shows circadian variation and contribution of histamine H1 receptors in mice. Initial increases in ventilation were augmented during dark periods. H1 receptors had no major relationship with circadian variation, but affected the declined phase.

متن کامل

Biphasic ventilatory response to hypoxia in unanesthetized rats.

To determine the role of postinspiratory inspiratory activity of the diaphragm in the biphasic ventilatory response to hypoxia in unanesthetized rats, we examined diaphragmatic activity at its peak (DI), at the end of expiration (DE), and ventilation in adult unanesthetized rats during poikilocapnic hypoxia (10 % O2) sustained for 20 min. Hypoxia induced an initial increase in ventilation follo...

متن کامل

Sustained Hypoxic Pulmonary Vasoconstriction in the Isolated Perfused Rat Lung: Effect of α1-adrenergic Receptor Agonist

Background: Alveolar hypoxia induces monophasic pulmonary vasoconstriction in vivo, biphasic vasoconstriction in the isolated pulmonary artery, and controversial responses in the isolated perfused lung. Pulmonary vascular responses to sustained alveolar hypoxia have not been addressed in the isolated perfused rat lung. In this study, we investigated the effect of sustained hypoxic ventilation o...

متن کامل

FORMALIN AS A PERIPHERAL NOXIOUS STIMULUS CAUSES A BIPHASIC RESPONSE IN NUCLEUS PARAGIGANTOCELLULARIS NEURONS

The effects of formalin as a peripheral noxious stimulus on the activity of lateral paragigantocellularis nucleus (LPGi) neurons were examined. Spontaneous activity ofLPGi neurons was recorded after confirmation of their responsiveness to acute pain, and thereafter formalin (50 µL, 2.5%) was injected in the contralateral hindpaw. The response of the LPGi neurons was monitored for 60 min. A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of applied physiology

دوره 97 6  شماره 

صفحات  -

تاریخ انتشار 2004